
Multi-Level Multi-Fidelity (MLMF) uncertainty quantification approaches make 
UQ accessible for cardiovascular applications:

1. Easily attainable low fidelity models and mesh resolution levels for our 
cardiovascular models lends itself to a MLMF framework.

2. The automated SimVascular-Dakota framework minimizes work for the 
user.

3. MLMF estimators allow for well-resolved accuracy of QoIs on a limited 
computational budget.

4. MLMF estimators vary in accuracy depending upon properties of the 
QoIs, such as local or global and healthy or diseased models.

The promising results of the initial study will lead to future work utilizing the
MLMF methods on a variety of patient models models.
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Introduction and Motivation

Patient-specific cardiovascular flow simulations

Uncertainty quantification in coronary artery 
simulations with fluid-structure interaction

Multi-fidelity framework for uncertainty 
quantification in cardiovascular simulations

Patient-specific computational cardiovascular models are successfully
employed in a wide range of clinical applications from disease diagnosis,
surgical planning, and medical device design. Results, however, are often
reported as deterministic, neglecting variations that could occur due to
uncertain input parameters. Examples of uncertain input parameters
include noisy and limited resolution medical image data, clinical
measurement of patient data, or population variability in results published
in the literature. Systematic quantification of uncertainties is a necessary
step towards clinical adoption of computational tools.

We present a suite of efficient and automated tools for 1) propagation of
uncertainty to assign confidence intervals to simulations and predictions in
a three dimensional anatomic model 2) multi-fidelity methods to reduce
the computational cost of the propagation.

Patient-specific cardiovascular modeling in the open source software
SimVascular (www.simvascular.org) consists of several steps that start
from medical image data and ends with solving the incompressible Navier-
Stokes equations on a finite element mesh.

First, centerline paths are generated for all vessels of interest. Next, the
vessel cross sections are segmented along these centerline paths. These
segmentations are then lofted together to form a solid model, which is
then typically meshed into tetrahedral finite elements. Boundary conditions
are then applied before solving the incompressible Navier-Stokes. Once the
simulations finish, they can be post-processed to compute hemodynamic
quantities of interest. Typical quantities of interest from these simulations
include pressure, flow, wall shear stress, and wall strain.
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Branch flow rate, pressure, time-averaged wall shear stress (TAWSS), wall 
deformation in six model branches were identified as the relevant 
quantities of interest (QoI). The selected 7% coefficient of variation in the 
inlet pressure Pin generated variability in all selected QoIs, with resulting 
standard deviations in a range between 5% to 7% of the corresponding 
mean, suggesting the variability in the output quantities of interest to be 
comparable to the inlet pressure variability, as shown in figure below. 

For cardiovascular UQ, Monte Carlo estimators have many desirable
properties. They are unbiased, offer flexibility with respect to heterogeneous
input sources, and their associated variance depends only on the true
variance and number of model evaluations, not on the problem
dimensionality. However, only a small fraction of these evaluations can
typically be afforded when working with expensive deterministic solvers. By
instead utilizing multi-level and multi-fidelity estimators, we can
substantially reduce the variance associated with Monte Carlo estimators for
the same computational cost.

Our workflow integrates multiple cardiovascular solvers with Sandia National
Laboratories’ Dakota toolkit for uncertainty analysis in a manner designed to
automatically manage the solutions of multiple models to compute multi-
level multi-fidelity (MLMF) estimators for a variety of quantities of interest.
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Both aorto-femoral and coronary model geometries were used to verify the
performance of the MLMF estimators. Over 100 different quantities of
interest (QoIs), ranging from global outlet flows and pressures to local time-
averaged wall shear stress quantities, were examined to robustly
demonstrate the power of the MLMF estimators. A range of uncertain
parameters, including boundary conditions and vessel material properties,
were explored in this study. Generally, these uncertain distributions can be
heterogeneously assimilated from patient data or assumed from literature
data. 3D, 1D, and 0D models were chosen following an extensive mesh
convergence study. Both healthy and diseased models were included.
Comparison of computational cost confirmed our expectation that multiple
orders of magnitude cost savings are achieved by the low-fidelity models.

MLMF estimators outperform the other estimators for all categories of QoIs.
The accuracy of each quantity of interest can be computed from a fixed
number of simulations or the ideal number of simulations needed to obtain a
fixed accuracy can be computed. Accuracy is defined as 6 " # /%[#] for each
quantity of interest Q (six times the coefficient of variation). The formula for
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for
each level l. The number of LF evaluations needed at each level is increased
by a factor which depends on the cost ratio between fidelities (wl) and the
correlations (El).

For an uncertain intramyocardial pressure Pim, the mean and the 95% 
confidence interval of Pi, Qi, wall deformation and the spatial distributions of 
TAWSS and in the circumflex branch of left coronary artery (LCx) were 
computed. Flow rate and TAWSS have significant variances, up to about 30% 
of their mean value, whereas pressure and wall displacements show 
coefficients of variation less than 3%.

Uncertain Inputs
• Image data noise
• Clinical data
• Boundary conditions
• Physiologic assumptions
• Material properties
• Geometry

Uncertain Outputs
• Flow rates
• Pressure levels
• Wall shear stress
• Oscillatory shear index
• Cardiac work
• Residence Time
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Figure 3: The developed workflow utilizes Sandia National Lab’s DAKOTA toolkit to automate the uncertainty

quantification process. (a) Dakota (o�cal logo from [? ]) automatically manages all steps within the outer box

after the user provides (b) all problem-specific inputs (such as stochastic (uncertain) parameters and their sampling

distributions, deterministic parameters and their mean values, the desired number of simulations, the desired con-

vergence criterion). The user can easily change for di↵erent UQ studies (c) which parameters to take as stochastic

versus deterministic. DAKOTA automates (d) the selection of models of di↵erent fidelities and mesh levels, with the

relevant simulation files provided by the user after (e) a mesh convergence study is conducted to select the appropriate

models. DAKOTA also (e) automatically solves the 0D, 1D or 3D model, including all pre- and post-processing, and

assimilates the full set of model outputs. Finally, DAKOTA extracts (g) the QoIs specified by the user and delivers

(h) the moments (mean, standard deviation) of the estimators for the QoIs.
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Left: Schematics for (a) multi-fidelity (b) multi-level and (c) MLMF estimators. Right: UQ workflow
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MLMF estimators for healthy models are general more accurate than for
diseased models. Similarly, MLMF estimators for global QoIs are more
accurate than for local QoIs. Both are explained by the complex dynamics
seen in diseased models or for local QoIs, which rely more heavily on the
more finely resolved (but more expensive) 3D models.

Healthy and Diseased QoIs Local and Global QoIs

Uncertainty in an input parameter in cardiovascular simulation causes the 
variabilities of simulation outcomes. The relationships between input 
parameter and output quantities of interest are quantified after injecting 
uncertainty in the input parameter. The goal of this study is to understand 
how much the outputs of the numerical simulation are affected by the 
degree of uncertainties in uncertain input parameters. 

Uncertainty in the clinical measurements is quantified using cardiac 
catheterization measurements from six patients, performed at the UCSD 
Medical Center. The intracoronary pressure waveform Pin was measured from 
a catheter over more than 100 heart cycles while acquiring an EGC signal. 
The duration of a heart cycle was measured through ECG, and the pressure 
waveforms were registered to lie within the same heart cycle. Ensemble 
statistics were determined (mean and standard deviation), with coefficient 
of variation in the 5-7% range. Additionally, uncertainty was injected into 
the time-derivative of the intramyocardial pressure, Pim, with a standard 
deviation equal to 10% of its peak value. 

A 3D multi-scale left coronary artery (LCA) model shown below is constructed 
from a CT imaging study using the open-source package Simvascular. The 3D 
LCA model has lumen and deformable vessel wall. The interaction between 
fluid and structure is simulated through an Arbitrary Lagrangian-Eulerian 
framework in the Simvascular svFSI solver. The inlet pressure waveform Pin
was extracted from a complete aorto-coronary model investigated in previous 
studies and used to validate the submodel. The lumped-parameter boundary 
conditions at the coronary outlets were designed to reproduce the physiologic 
response in a coronary flow, in which the cardiac muscle contraction impedes 
the coronary flow during systole. 

Coronary sub-circuits

Cardiovascular simulation provides a non-invasive prediction tool for 
surgical planning, clinical decision-making, and a platform for 
fundamental research on disease mechanisms. These tools have been 
applied to numerous clinical applications, including new surgical 
designs for congenital heart disease, risk assessment in coronary artery 
disease, aneurysm treatment, and stent design. However, current 
cardiovascular simulations only provide end-users with deterministic 
predictions, despite the fact that numerous uncertainties exist in 
clinical, physiologic, and image data. Our team in the Marsden 
laboratory aims to lead a paradigm shift in the patient-specific 
modeling of cardiovascular system by establishing quantitative 
statistical measures of reliability. 

The goal of my postdoctoral research is to incorporate a UQ 
framework into patient-specific cardiovascular simulations to 
compute output statistics for simulation predictions. This effort 
will enable us to propagate uncertainties in high stochastic 
dimensions from clinical and imaging data to simulation 
predictions. Before forward propagation of uncertainty, we have assessed performance of linear solvers 
and preconditioners in cardiovascular simulations to speed up the computationally challenging UQ 
propagation, which require many expensive function evaluations. Parameter estimation in a full 
multiscale 0D/3D cardiovascular model by employing Markov chain Monte Carlo (MCMC) sampling is 
used to identify parameters in the LPN system. Building a reduced-order model (Figure 2), we compare 
efficiency and convergence of multiple UQ methodologies. Using the sub-model, we plan to assess the 
computational performance of several non-intrusive UQ methods: stochastic collocation, multi-level 
Monte Carlo, and compressive sampling.  

Future research plans: Analysis and tool development for multi-physics fluid engineering. 
In the following sections, I will describe physical problems of interests which will comprise the core 
areas of my independent research program over the next five years as I launch my faculty career. 
 
Multiphase/Multi-physics flows in turbulence 
Turbulence plays a key role in many realistic applications in propulsion, combustion, aerodynamics and 
hydrodynamics. Some examples of these applications include: liquid fuel combustion in engines, 
material processes, and energy saving schemes in hydrodynamic vehicles. Analysis of these problems 
involve multiphase and multi-physics interactions, and two-way coupling of different physical and phase 
states is the core aspect for the understanding of the phenomena. However, applications of direct 
numerical simulation in most practical problems have been intractable due to challenging resolution 
requirements for turbulent flows. In addition, tracking phase boundary is still a challenge in numerical 
simulations of multiphase turbulent flows. Therefore, a suitable choice of mathematical technique is 
desirable to consider coupling effects from multiphase boundaries and structures at the interface of 
turbulent flows. In the field of turbulent multiphase flows, I plan to develop computational algorithms to 
capture dynamics of interface. Several interface tracking methods such as level set, volume of fluid, 
diffuse interface models will be tested and compared in a simple benchmark problem. When two-fluid 
interaction involves solid boundaries, the dynamics of contact angle should be considered. Currently 
continuum modeling of dynamic contact line is not well established, and often ignored in multiphase 

Figure 2. Sub-model of a left 
coronary artery for efficient 
uncertainty propagation 
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from the LCA model. 

Inlet pressure Pin and intramyocardial pressure Pim uncertainty were modeled 
as a Gaussian stochastic process in time with an exponential autocovariance 
function. Pin is then approximated through a finite collection of independent 
N(0,1) random variables and eigenfunctions of the autocovariance function 
following a Karhunen-Loeve expansion. The standard deviation σ is set to 7 
percent of the cycle-averaged inlet pressure at the inlet. Samples are obtained 
by projecting a four-dimensional Sobol sequence through a multivariate 
Gaussian CDF. 

Simplifying assumptions lead to the formulation of lower-fidelity models as
well. The Hughes and Lubliner 1D Navier-Stokes formulation with a linear
constitutive equation is used in our 1D solver, while a 0D model can be
formulated as a lumped parameter network using a circuit analogy.


